A Proximal Point Method for Nonsmooth Convex Optimization Problems in Banach Spaces

نویسندگان

  • Y. I. ALBER
  • R. S. BURACHIK
  • A. N. IUSEM
چکیده

In this paper we show the weak convergence and stability of the proximal point method when applied to the constrained convex optimization problem in uniformly convex and uniformly smooth Banach spaces. In addition, we establish a nonasymptotic estimate of convergence rate of the sequence of functional values for the unconstrained case. This estimate depends on a geometric characteristic of the dual Banach space, namely its modulus of convexity. We apply a new technique which includes Banach space geometry, estimates of duality mappings, nonstandard Lyapunov functionals and generalized projection operators in Banach spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces

Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...

متن کامل

Optimality conditions for Pareto efficiency and proper ideal point in set-valued nonsmooth vector optimization using contingent cone

In this paper, we first present a new important property for Bouligand tangent cone (contingent cone) of a star-shaped set. We then establish optimality conditions for Pareto minima and proper ideal efficiencies in nonsmooth vector optimization problems by means of Bouligand tangent cone of image set, where the objective is generalized cone convex set-valued map, in general real normed spaces.

متن کامل

Minimization of Nonsmooth Convex Functionals in Banach Spaces

We develop a uniied framework for convergence analysis of subgradient and subgradient projection methods for minimization of nonsmooth convex functionals in Banach spaces. The important novel features of our analysis are that we neither assume that the functional is uniformly or strongly convex, nor use regularization techniques. Moreover, no boundedness assumptions are made on the level sets o...

متن کامل

A proximal point method in nonreflexive Banach spaces

We propose an inexact version of the proximal point method and study its properties in nonreflexive Banach spaces which are duals of separable Banach spaces, both for the problem of minimizing convex functions and of finding zeroes of maximal monotone operators. By using surjectivity results for enlargements of maximal monotone operators, we prove existence of the iterates in both cases. Then w...

متن کامل

A proximal cutting plane method using Chebychev center for nonsmooth convex optimization

An algorithm is developped for minimizing nonsmooth convex functions. This algortithm extends Elzinga-Moore cutting plane algorithm by enforcing the search of the next test point not too far from the previous ones, thus removing compactness assumption. Our method is to Elzinga-Moore’s algorithm what a proximal bundle method is to Kelley’s algorithm. As in proximal bundle methods, a quadratic pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000